
On the reduction of the multidimensional stationary Schrödinger equation to a first-order

equation and its relation to the pseudoanalytic function theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 851

(http://iopscience.iop.org/0305-4470/38/4/006)

Download details:

IP Address: 171.66.16.94

The article was downloaded on 03/06/2010 at 03:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 851–868 doi:10.1088/0305-4470/38/4/006

On the reduction of the multidimensional stationary
Schrödinger equation to a first-order equation and
its relation to the pseudoanalytic function theory

Vladislav V Kravchenko

Departmento de Telecomunicaciones, SEPI, Escuela Superior de Ingenierı́a Mecánica y Eléctrica,
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Abstract
Given a particular solution of a one-dimensional stationary Schrödinger
equation this equation of second order can be reduced to a first-order linear
ordinary differential equation. This is done with the aid of an auxiliary
Riccati differential equation. In the present work we show that the same
fact is true in a multidimensional situation also. For simplicity we consider
the case of two or three independent variables. One particular solution of
the stationary Schrödinger equation allows us to reduce this second-order
equation to a linear first-order quaternionic differential equation. As in the
one-dimensional case this is done with the aid of an auxiliary quaternionic
Riccati equation. The resulting first-order quaternionic equation is equivalent
to the static Maxwell system and is closely related to the Dirac equation. In the
case of two independent variables it is the well-known Vekua equation from
theory of pseudoanalytic (or generalized analytic) functions. Nevertheless,
we show that even in this case it is very useful to consider not only complex
valued functions, solutions of the Vekua equation, but complete quaternionic
functions. In this way the first-order quaternionic equation represents two
separate Vekua equations, one of which gives us solutions of the Schrödinger
equation and the other one can be considered as an auxiliary equation of a
simpler structure. Moreover for the auxiliary equation we always have the
corresponding Bers generating pair (F,G), the base of the Bers theory of
pseudoanalytic functions, and what is very important, the Bers derivatives
of solutions of the auxiliary equation give us solutions of the main Vekua
equation and as a consequence of the Schrödinger equation. Based on this
fact we obtain an analogue of the Cauchy integral theorem for solutions of the
stationary Schrödinger equation. Other results from theory of pseudoanalytic
functions can be written for solutions of the Schrödinger equation. Moreover,
for an ample class of potentials in the Schrödinger equation (which includes for
instance all radial potentials), this new approach gives us a simple procedure
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allowing us to obtain an infinite sequence of solutions of the Schrödinger
equation from one known particular solution.

PACS numbers: 02.30.−f, 02.30.Tb, 30G20, 30G35, 35J10

1. Introduction

Consider the one-dimensional static Schrödinger equation

u′′ + vu = 0 (1)

and the associated Riccati equation

y ′ + y2 = −v. (2)

Equation (1) is related to equation (2) by the easily inverted substitution

y = u′

u
.

Thus solutions of the Riccati equation (2) are simply logarithmic derivatives of solutions of
the Schrödinger equation (1) and vice versa solutions of (1) are logarithmic antiderivatives of
solutions of (2). The generalization of this fact for a multidimensional situation was obtained
in [8] (see also [10]). Among the peculiar properties of the Riccati equation stands out an
important theorem of Euler, dating from 1760. If a particular solution y0 of the Riccati equation
is known, the substitution y = y0 + z reduces (2) to a Bernoulli equation which in turn is
reduced by the substitution z = 1

u
to a first-order linear equation. Thus given a particular

solution of the Riccati equation, it can be linearized and the general solution can be found
in two integrations. As a consequence of this, given a particular solution of the Schrödinger
equation (1) the general solution can be found from a first-order linear equation. This can be
seen immediately from the factorization of the one-dimensional Schrödinger operator

∂2 + v(x) = (∂ + y0(x))(∂ − y0(x)) (3)

which is valid if and only if y0 is a solution of (2).
In the present work we show that given a particular solution of a multidimensional

stationary Schrödinger equation (we consider the case of three or two independent variables
but this result can easily be generalized to n variables using Clifford algebras instead of
quaternions) this equation of second order can be reduced to a first-order linear quaternionic
differential equation. For doing this we use a quaternionic factorization of the Schrödinger
operator proposed in [3, 4] (see also [7]) and the results on the quaternionic Riccati equation
from [8, 10] where it was shown that having a particular solution of the quaternionic Riccati
equation one can reduce it to a second-order linear equation. Here we show that the similarity
with the one-dimensional situation is much closer, and one particular solution is sufficient to
reduce the quaternionic Riccati equation to a first-order linear equation. The resulting first-
order quaternionic equation is equivalent to the static Maxwell system and is closely related
to the Dirac equation. In the case of two independent variables it is the well-known Vekua
equation from theory of pseudoanalytic (or generalized analytic) functions (see, e.g., [2, 5,
6, 14, 15]). We show that even in this case it is very useful to consider not only complex
valued functions, solutions of the Vekua equation, but complete quaternionic functions. In
this way the first-order quaternionic equation represents two separate Vekua equations, one of
which gives us solutions of the Schrödinger equation and the other one can be considered as an
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auxiliary equation of a simpler structure. Moreover for the auxiliary equation we always have
in explicit form the corresponding Bers generating pair (F,G), the base of Bers’ theory of
pseudoanalytic functions and, which is very important, the Bers derivatives of solutions of the
auxiliary equation give us solutions of the main Vekua equation and as a consequence of the
Schrödinger equation. Based on this fact, for example, we obtain an analogue of the Cauchy
integral theorem for solutions of the stationary Schrödinger equation. Other results from
theory of pseudoanalytic functions can be written for solutions of the Schrödinger equation.
Moreover, for an ample class of potentials in the Schrödinger equation (which includes for
instance all radial potentials), this new approach gives us a simple procedure allowing us to
obtain an infinite sequence of solutions of the Schrödinger equation from one known particular
solution.

Besides this introduction the paper contains four sections. In section 2 we introduce
necessary notation from quaternionic analysis. In section 3 we prove a spatial generalization
of the Euler theorem for the Riccati equation and show how a particular solution of the
Schrödinger equation allows us to reduce it to a first-order quaternionic equation. We observe
that in the case of two independent variables this first-order equation represents two separate
Vekua equations. In order to apply theory of pseudoanalytic functions to the resulting Vekua
equations, in section 4 we introduce some necessary definitions and results from Bers’ theory.
Finally in section 5 we show how all the machinery of this quite forgotten mathematical theory
allows us to obtain surprising results for the Schrödinger equation starting with an analogue
of the Cauchy integral theorem and including infinite sequences of solutions generated by one
particular solution.

2. Notation from quaternionic analysis

We will consider the algebra H(C) of complex quaternions or biquaternions which have the
form q = q0 +q1i +q2j +q3k, where {qk} ⊂ C, and i, j, k are the quaternionic imaginary units.

The vectorial representation of a complex quaternion will be used. Namely, each complex
quaternion q is a sum of a scalar q0 and of a vector q:

q = Sc(q) + Vec(q) = q0 + q,

where q = q1i + q2j + q3k. The purely vectorial complex quaternions (Sc(q) = 0) are
identified with vectors from C

3. Note that q2 = −〈q, q〉 where 〈·, ·〉 denotes the usual scalar
product.

By Mp we denote the operator of multiplication by a complex quaternion p from the
right-hand side: Mpq = q · p.

More information on the structure of the algebra of complex quaternions can be found,
for example, in [10] or [12].

Let q be a complex quaternion-valued differentiable function of x = (x1, x2, x3). Denote

Dq = i
∂

∂x1
q + j

∂

∂x2
q + k

∂

∂x3
q.

This expression can be rewritten in a vector form as follows:

Dq = −div q + grad q0 + rot q.

That is, Sc(Dq) = −div q and Vec(Dq) = grad q0 + rot q. Let us note that D2 = −�.
If q0 is a scalar function then Dq0 coincides with grad q0. The expression Dq0/q0 will be

called the logarithmic derivative of q0.
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3. Reduction of the Schrödinger equation to a first-order quaternionic equation

Consider the equation

(−� + u)f = 0 (4)

where � = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3
, f and u are complex valued functions. We assume that f is twice

differentiable. Together with (4) we introduce the following quaternionic equation,

Dq + q2 = −u (5)

where q is a purely vectorial differentiable biquaternion valued function.

Theorem 1 [3]. For an arbitrary scalar twice differentiable function f the following equality
holds,

(D + Mh)(D − Mh)f = (−� + u)f (6)

if and only if h is a solution of (5).

Thus, given a particular solution of (5) the Schrödinger operator in (4) can be factorized.

Theorem 2 [8]. Solutions of (4) are related to solutions of (5) in the following way. For any
nonvanishing solution f of (4) its logarithmic derivative

q = Df

f
(7)

is a solution of (5) and any solution q of (5) is a logarithmic derivative of form (7) of a solution
of (4).

Proof. A direct substitution into equation (5) shows us that for a nonvanishing solution f of
(4) its logarithmic derivative (7) is a solution of (5). Now let us suppose that q is a solution
of (5). From the vector part of (5) we have that q is a gradient of some scalar function ξ :
q = grad ξ . Then q can be represented in the form (7) where f = eξ . Substituting (7) into
(5) we obtain that f is a solution of (4). �

Remark 3. Theorems 1 and 2 show us that equation (5) is a generalization of the Riccati
equation. We will call it quaternionic Riccati equation.

Lemma 4 [9]. For a nonvanishing scalar differentiable function ε there exists a one-to-one
correspondence between solutions of the static Maxwell system

div(ε E) = 0, (8)
rot E = 0, (9)

and solutions of the equation

(D + Mh)F = 0 (10)

where

h = D
√

ε√
ε

.

Vector E is a solution of (8), (9) if and only if the vector F = √
εE is a solution of (10).

Proof. System (8), (9) can be rewritten in the form

DE =
〈

grad ε

ε
, E

〉
.
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Let us make a simple observation: the scalar product of two vectors p and q can be written as
follows:

〈p, q〉 = − 1
2 (pM + Mp)q.

Then we have (
D +

1

2

grad ε

ε

)
E = −1

2
M

grad ε

ε E. (11)

Note that
1

2

grad ε

ε
= grad

√
ε√

ε
.

Then equation (11) can be rewritten in the following form,

1√
ε

D(
√

εE) + Eh = 0 (12)

where h = D
√

ε/
√

ε. Introducing the notation F = √
εE and multiplying (12) by

√
ε we

obtain the equivalence of the system (8), (9) to (10). �

Lemma 5 [8]. Let h be an arbitrary particular solution of (5) (then as was mentioned above
it is a gradient of some scalar function ξ ). The general solution of (5) has the form

q = h + g, (13)

where g = (grad �)/� and � is a general solution of the equation

�� + 2 〈grad ξ, grad �〉 = 0, (14)

or equivalently of

div(e2ξ grad �) = 0. (15)

Proof. Substituting (13) into (5) gives

Dg − 2 〈h, g〉 + g2 = 0. (16)

Note that the vector part of (16) is rot g = 0, so that

g = grad �

for some function �. If � = e�, this is equivalent to

g = (grad �)/�.

Equation (16), written in terms of �, is

− 1

�2
(grad �)2 − 1

�
�� − 2

�
〈grad ξ, grad �〉 +

1

�2
(grad �)2 = 0,

so that (16) is equivalent to

�� + 2 〈grad ξ, grad �〉 = 0.

Noting that

div(e2ξ grad �) = 2 e2ξ 〈grad ξ, grad �〉 + e2ξ�� = e2ξ (�� + 2 〈grad ξ, grad �〉),
this equation can be rewritten in the form

div(e2ξ grad �) = 0. �

Now we are ready to prove a generalization of the Euler theorem for the quaternionic
Riccati equation.
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Theorem 6 (Euler’s theorem for the quaternionic Riccati equation). Let h = grad ξ be a
particular solution of (5). The general solution of the quaternionic Riccati equation has the
form q = h + g where g = D�

�
and � is obtained from the equation

grad � = e−ξ F (17)

where F is the general solution of (10).

Proof. According to lemma 5 it is sufficient to prove that � is a solution of (14) (or what is
the same of (15)) if and only if the vector F = eξ grad � is a solution of (10). Let us note that
if � is a solution of (14) then the vector E = grad � is a solution of the system (8), (9) where
ε = e2ξ and vice versa if E is a solution of (8), (9) then it is a gradient of some function �

which is necessarily a solution of (14). Now due to lemma 4, grad � is a solution of (8), (9)
if and only if F = eξ grad � is a solution of equation (10) where h = Deξ

eξ = grad ξ . �

Thus, given a particular solution of the quaternionic Riccati equation, the general solution
reduces to the linear first-order equation (10), exactly as in the one-dimensional situation.

Using theorem 2 we immediately arrive at the following result for the Schrödinger
equation.

Theorem 7. Let f0 be a nonvanishing particular solution of (4) and F be the general solution
of (10) where h = Df0/f0. Then the general solution f of (4) is the logarithmic antiderivative
of q: Df

f
= q, where q = h + g, g = D�

�
and � is obtained from the equation

grad � = F
f0

. (18)

Proof. From theorem 2 we have that f is the logarithmic antiderivative of q (equation (7)),
where q is the general solution of (5). For a particular solution f0 of (4) the vector

h = Df0

f0
= grad ln f0

is a particular solution of (5). Due to theorem 6 the general solution of (5) has the form
q = h + g, where g = D�

�
and � is obtained from the equation

grad � = e−ln f0 F = F
f0

where F is the general solution of (10). �

Remark 8. The logarithmic antiderivative of q always exists and can be obtained easily.
Being a solution of (5) q is necessarily a gradient of some function � which can be constructed
analytically. Then f has the form f = Ce�, where C is a complex constant.

Remark 9. From theorem 7 it follows that for any vector F, solution of (10) with h = Df0/f0,
the vector F/f0 must be a gradient of some scalar function �, and this is true. Let us show that
indeed rot(F/f0) = 0. Note that this condition is equivalent to the equality Vec(D(F/f0)) = 0.
Consider

D

(
F
f0

)
= 1

f0
DF − Df0

f 2
0

F = −
(

F
Df0

f 2
0

+
Df0

f 2
0

F
)

= 2

〈
F,

Df0

f 2
0

〉
.

Thus Vec(D(F/f0)) = 0 and hence the vector F/f0 is a gradient.

Remark 10. Let us summarize the results of this section in the following chain of actions
which one should follow in order to obtain solutions of (4) from solutions of (10).
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Given a nonvanishing particular solution f0 of the Schrödinger equation (4) we construct
the vector h = Df0/f0 and consider equation (10). Taking a solution F of (10) we find � from
(18). Then we construct the vectors g = D�/� and q = h + g. q is necessarily a gradient of
some scalar function �. Finding � we finally obtain a solution of (4) as f = Ce�, where C
is a complex constant.

The same chain of actions can be expressed as a single formula in the following way. Let
G be a complex valued vector such that rot G ≡ 0. Then the complex valued scalar function
ϕ is said to be its antigradient if grad ϕ = G. We will write ϕ = A[G]. The operator A is a
simple generalization of the usual antiderivative and it defines the function ϕ up to an arbitrary
constant. Its explicit representation is well known and has the form

A[G](x, y, z) =
∫ x

x0

G1(ξ, y0, z0) dξ +
∫ y

y0

G2(x, ζ, z0) dζ +
∫ z

z0

G3(x, y, η) dη + C.

Then according to our chain of actions we have

� = A
[

F
f0

]
, g =

(
A

[
F
f0

])−1

· F
f0

, q = Df0

f0
+

(
A

[
F
f0

])−1

· F
f0

;

� = A
[

Df0

f0
+

(
A

[
F
f0

])−1

· F
f0

]

and finally

f = exp

(
A

[
Df0

f0
+

(
A

[
F
f0

])−1

· F
f0

])
.

As eA[Df0/f0] = C1f0 we obtain

f = C1f0 exp

(
A

[(
A

[
F
f0

])−1

· F
f0

])
. (19)

Thus given a particular solution of the Schrödinger equation (4), due to (19) the general
solution reduces to the first-order equation (10). It is interesting to note that due to lemma 4,
equation (10) is equivalent to the static Maxwell system. It is closely related (see [7, 11])
also to the Dirac equation as well as to the Beltrami fields which are solutions of the equation
rot f + αf = 0 (see, e.g., [1, 13]).

The following statement gives us the way to transform solutions of the Schrödinger
equation into solutions of (10).

Proposition 11. Let f1 be another nonvanishing solution of the Schrödinger equation (4).
Then the ratio � = f1/f0 is a solution of the equation

div
(
f 2

0 grad �
) = 0 (20)

and the vector F = f0D(f1/f0) is a solution of equation (10) where h = Df0/f0.

Proof. By theorem 2 the vector q = Df1/f1 is a solution of (5). Then consider the vector g
from lemma 5:

g = q − h = Df1

f1
− Df0

f0
= D(f1/f0)/(f1/f0).

Thus we have that g = D�/� where � = f1/f0, and by lemma 5, � satisfies (20).
From (18) we obtain that F = f0D� = f0D(f1/f0) is a solution of (10). �
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Let us consider equation (10) for a biquaternion valued function p whose scalar part is
not necessarily zero

(D + Mh)p = 0 (21)

and let us use the following representation for biquaternions:

p = P1 + P2 j,

where P1 = p0+p3k and P2 = p2−p1k. Then D = D1+D2 j, where D1 = ∂3k, D2 = ∂2−∂1k
and h = H1 + H2 j, where H1 = h3k,H2 = h2 − h1k. Using these notations, equation (21)
can be rewritten as the following system:

D1P1 − D2P 2 + H1P1 − H 2P2 = 0, (22)

D2P 1 + D1P2 + H2P1 + H 1P2 = 0. (23)

Now let us suppose that both p and h do not depend on x3. Then system (22), (23) turns into
the pair of decoupled equations:

D2P1 + H2P1 = 0 (24)

and

D2P2 + H2P 2 = 0 (25)

which are nothing but Vekua’s equations describing pseudoanalytic or generalized analytic
functions (see, e.g., [5, 15]).

Remark 12. Here we should mention that in general the components p0, . . . , p3 as well as
h1, h2 can be complex valued functions, hence P1, P2 and H2 can be bicomplex. Nevertheless
this detail is insignificant for what follows, because all results from Bers’ theory which will
be used in the subsequent sections are valid for bicomplex solutions also. Of course, when u
in (4) is a real valued function we can consider real valued solutions of (4) only. In that case
(24) and (25) are usual Vekua’s equations.

Remark 13. In what follows we consider u and f in (4) being independent of x3. Then given
a particular solution f0 of (4), the general solution reduces to equation (25) (which in this case
is equivalent to (10)). Thus we are primarily interested in solutions of (25), and (24) can be
considered as an auxiliary equation. Nevertheless as we will see in section 5 equations (24)
and (25) are closely related to each other. With the aid of Bers’ theory solutions of (25) can
be obtained from solutions of (24) and it is interesting to note that by construction we always
have at least two solutions of (24) in explicit form. It is easy to see that the functions

F = 1

f0
and G = f0k

are solutions of (21) where h = Df0/f0 and consequently they are solutions of (24).

4. Some definitions and results from Bers’ theory

Bers’ theory of pseudoanalytic functions was essentially developed in [5] (see also [6]). It
is based on the so-called generating pair, a pair of complex functions F and G satisfying the
inequality

Im(FG) > 0 (26)
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in some domain of interest � which may coincide with the whole complex plane. F and G
are assumed to possess partial derivatives with respect to the real variables x and y. In this
case the operators ∂z = ∂

∂x
+ i ∂

∂y
and ∂z = ∂

∂x
− i ∂

∂y
can be applied (usually these operators are

introduced with the factor 1/2, nevertheless here it is somewhat more convenient to consider
them without it) and the following characteristic coefficients of the pair (F,G) can be defined,

a(F,G) = −FGz − FzG

FG − FG
, b(F,G) = FGz − FzG

FG − FG
,

A(F,G) = −FGz − FzG

FG − FG
, B(F,G) = FGz − FzG

FG − FG
,

where the subindex z or z means the application of ∂z or ∂z respectively.
Every complex function w defined in a subdomain of � admits the unique representation

w = φF + ψG where the functions φ and ψ are real valued. Sometimes it is convenient to
associate with the function w the function ω = φ + iψ . The correspondence between w and
ω is one-to-one.

Bers introduces the notion of the (F,G) derivative of a function w which exists and has
the form

ẇ = φzF + ψzG = wz − A(F,G)w − B(F,G)w (27)

if and only if

φzF + ψzG = 0. (28)

This last equation can be rewritten in the following form,

wz = a(F,G)w + b(F,G)w

which we call the Vekua equation. Solutions of this equation are called (F,G)-pseudoanalytic
functions. If w is (F,G)-pseudoanalytic, the associated function ω is called (F,G)-
pseudoanalytic of second kind.

Remark 14. The functions F and G are (F,G)-pseudoanalytic, and Ḟ ≡ Ġ ≡ 0.

Definition 15. Let (F,G) and (F1,G1) be two generating pairs in �. (F1,G1) is called
successor of (F,G) and (F,G) is called predecessor of (F1,G1) if

a(F1,G1) = a(F,G) and b(F1,G1) = −B(F,G).

The importance of this definition becomes obvious from the following statement.

Theorem 16. Let w be an (F,G)-pseudoanalytic function and let (F1,G1) be a successor of
(F,G). Then ẇ is an (F1,G1)-pseudoanalytic function.

Definition 17. Let (F,G) be a generating pair. Its adjoint generating pair (F,G)∗ =
(F ∗,G∗) is defined by the formulae

F ∗ = − 2F

FG − FG
, G∗ = 2G

FG − FG
.

Theorem 18.
(F,G)∗∗ = (F,G),

a(F ∗,G∗) = −a(F,G), A(F ∗,G∗) = −A(F,G),

b(F ∗,G∗) = −B(F,G), B(F ∗,G∗) = −b(F,G).
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Lemma 19. If (F1,G1) is a successor of (F,G) then (F,G)∗ is a successor of (F1,G1)
∗.

The (F,G) integral of w on a rectifiable curve � is, by definition,∫
�

w d(F,G)z = Re
∫

�

F ∗w dz − i Re
∫

�

G∗w dz.

Another important integral is also needed

∗
∫

�

w d(F,G)z = Re
∫

�

G∗w dz + i Re
∫

�

F ∗w dz

(we follow the notation of Bers).
A continuous function w defined in a domain � is called (F,G)-integrable if for every

closed curve � situated in a simply connected subdomain of �,∫
�

w d(F,G)z = 0.

Theorem 20. An (F,G) derivative ẇ of an (F,G)-pseudoanalytic function w is (F,G)-
integrable and ∗ ∫ z1

z0
ẇ d(F,G)z = ω(z1) − ω(z0).

The integral ∗ ∫ z1

z0
ẇ d(F,G)z is called (F,G)-antiderivative of ẇ.

Theorem 21. Let (F,G) be a predecessor of (F1,G1). A continuous function is (F1,G1)-
pseudoanalytic if and only if it is (F,G)-integrable.

5. Applications of Bers’ theory to the stationary Schrödinger equation

Let us return to equations (24) and (25) which in a two-dimensional case are equivalent to
the quaternionic equation (21). In order to use Bers’ notation from the preceding section we
rewrite (24) and (25) in the following form,

wz = bw (29)

and

vz = bv (30)

where z = x + iy, x = x2, y = x1 and instead of the imaginary unit k we write i. It is easy to
see that b = −H 2 = −∂zf0/f0 and w = P1, v = P2.

As was mentioned above (remark 13) for equation (29) we know always two solutions

F = 1

f0
and G = if0, (31)

which obviously fulfil (26). Thus (F,G) is a generating pair corresponding to equation (29).
We have

a(F,G) = 0, b(F,G) = b = −∂zf0

f0
,

A(F,G) = 0, B(F,G) = −∂zf0

f0
.

According to definition 15 the characteristic coefficients for a successor of (F,G) have the
form

a(F1,G1) = 0, b(F1,G1) = ∂zf0

f0
= −b.
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Then due to theorem 16, if w is a solution of (29) then its (F,G) derivative is a solution of
the equation

Wz = −bW, (32)

but solutions of the last equation multiplied by i become solutions of (30) and vice versa. Thus
we obtain the following statement.

Theorem 22. Let w be a solution of (29). Then the function

v = iẇ = i

(
wz +

∂zf0

f0
w

)
is a solution of (30).

It is easy to see that according to definition 17:

F ∗ = − i

f0
, G∗ = f0

and

b(F ∗,G∗) = −B(F,G) = −b.

Thus the (F,G) integral of a function W is defined as follows:∫
�

W d(F,G)z = −Re
∫

�

i

f0
W dz − i Re

∫
�

f0W dz

= Im
∫

�

W

f0
dz − i Re

∫
�

f0W dz.

From theorems 20 and 21 we obtain the following result.

Theorem 23. Let v be a solution of (30) in a domain �. Then for every closed curve �

situated in a simply connected subdomain of �,

Re
∫

�

v

f0
dz + i Im

∫
�

f0v dz = 0. (33)

Proof. For any solution v of (30) the function W = iv is a solution of (32). As (32) corresponds
to a successor of (F,G), by theorem 20 W is (F,G)-integrable. That is

Im
∫

�

W

f0
dz − i Re

∫
�

f0W dz = 0.

Now substituting iv instead of W we obtain (33). �

In order to analyse the meaning of this result for solutions of the Schrödinger equation let
us rewrite some statements from section 3 in our ‘two-dimensional’ notation.

Consider the equation

(−∂z∂z + u)f = 0 (34)

where u and f depend on x, y, and z = x + iy. For simplicity we consider u and f being
real-valued functions. The corresponding Riccati equation (5) takes the form

∂zQ + |Q|2 = u

where q = Qj. Equation (10) turns into (30), F from (10) and v from (30) are related by the
equality F = vj. Then theorem 7 in a two-dimensional situation can be rewritten as follows.
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Theorem 24. Let f0 be a nonvanishing particular solution of (34) and v be the general
solution of (30) where b = −∂zf0/f0. Then the general solution f of (34) is obtained from
the equation ∂zf = Qf , where Q = ∂zf0/f0 + ∂z�/� and � is obtained from the equation
∂z� = v/f0.

As was explained in remarks 8–10, given a solution v of (30), the corresponding solution
f of (34) can be constructed analytically. The procedure consists of various simple steps, on
two of which it requires reconstruction of the potential function from its gradient.

From proposition 11 we obtain the following statement.

Proposition 25. Let f1 be another solution of (34). Then the function

v = f0∂z(f1/f0) (35)

is a solution of (30), where b = −∂zf0/f0.

Having this precise relation between solutions of (34) and (30) we are able to prove the
following result.

Theorem 26 (Cauchy’s integral theorem for the Schrödinger equation). Let f0 be a
nonvanishing solution of (34) in a domain � and f1 be another arbitrary solution of (34)
in �. Then for every closed curve � situated in a simply connected subdomain of �,

Re
∫

�

∂z

(
f1

f0

)
dz + i Im

∫
�

f 2
0 ∂z

(
f1

f0

)
dz = 0. (36)

Proof. Substitution of (35) into (33) gives us the result. �

Remark 27. This theorem is also valid when u ≡ 0, that is for f0 and f1 being harmonic
functions. If we take f0 ≡ 1, then (36) turns into the equality

∫
�

∂zf1 dz = 0 which is
obviously true because if f1 is harmonic, then ∂zf1 is analytic. In example 32 we will give a
nontrivial example illustrating this theorem.

From theorems 21 and 26 we obtain an analogue of the Morera theorem for the Schrödinger
equation (34).

Theorem 28. Let f0 be a nonvanishing particular solution of (34). The function f1 is a
solution of (34) also if (36) is valid for every closed curve � situated in a simply connected
subdomain of �.

Consider equation (28) with the functions (31). It takes the form

φz + if 2
0 ψz = 0. (37)

Proposition 29. Let the function w = φF + ψG be (F,G)-pseudoanalytic corresponding to
the functions (31), that is

w = φ

f0
+ if0ψ (38)

is a solution of (29). Then

〈grad φ, grad ψ〉 = 0.

Proof. Function (38) is a solution of (29) if and only if (37) is valid. Let us rewrite (37) in the
form

φx − f 2
0 ψy = 0 (39)

φy + f 2
0 ψx = 0. (40)
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From (40) we have f 2
0 = −φy/ψx . Substituting this expression into (39) we obtain

φx + ψy

φy

ψx

= 0

or

φxψx + φyψy = 0. �

In general, solution of (37) or equivalently of system (39), (40) seems to be a difficult
task. Nevertheless for a quite general class of functions f0 we can obtain solutions of (39),
(40) explicitly. Let us make the following suppositions.

Condition 30. Let f0 be a function of some variable ρ : f0 = f0(ρ) such that �ρ

|grad ρ|2 is a

function of ρ. We denote it by s(ρ) = �ρ

|grad ρ|2 .

The simplest example of such ρ is of course any harmonic function. Another important
example is ρ =

√
x2 + y2.

Consider system (39), (40) and look for φ being a function of ρ : φ = φ(ρ) (as we show
below such solution always exists). Then

ψx = − ρy

f 2
0

φ′, ψy = ρx

f 2
0

φ′. (41)

For the solubility of this system we obtain the following condition,

∂

∂x

(
ρx

f 2
0

φ′
)

+
∂

∂y

(
ρy

f 2
0

φ′
)

= 0

which can be written as an ordinary differential equation

φ′′ +

(
s − 2

f ′
0

f0

)
φ′ = 0.

From here we have

φ′(ρ) = e−S(ρ)f 2
0 (ρ)

where S(ρ) = ∫
s(ρ) dρ.

With the aid of (41) we can reconstruct ψ . Nevertheless we are interested neither
in ψ nor in φ but in φz and ψz instead. Having them we construct the function
v = i(φzF + ψzG) = i(φz/f0 + iψzf0) which gives us a solution of (30). We have

φz = φ′ρz = e−Sf 2
0 ρz (42)

and

ψz = −φ′
(

ρy + iρx

f 2
0

)
= −ie−Sρz. (43)

Then we obtain the following solution of (30):

v1 = i(φzF + ψzG) = 2 if0 e−Sρz.

In much the same way we can construct another solution of (30) looking for ψ = ψ(ρ). Then

φx = f 2
0 ρyψ

′, φy = −f 2
0 ρxψ

′.

and ψ ′ = e−S
/
f 2

0 . Calculating φz and ψz we obtain

φz = ie−Sρz (44)
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and

ψz = e−S

f 2
0

ρz. (45)

Thus we arrive at the following solution of (30):

v2 = i

(
ie−Sρz

f0
+ i

e−S

f 2
0

ρzf0

)
= −2 e−S ρz

f0
.

Denote

FI = v1

2
and GI = v2

2
. (46)

Then Im(F IGI ) = e−2S |grad ρ|2 > 0 and hence we have a generating pair for (30) in
explicit form. Note that (FI ,GI ) is not a successor of (F,G) but a successor multiplied by i:
(FI ,GI ) = i(F1,G1).

It is interesting to see what are the new solutions f1 and f2 of the Schrödinger equation (34)
corresponding to FI and GI . In order to illustrate this let us consider an example.

Example 31. Let u(x, y) = x2 + y2. Then a particular solution of (34) can be chosen in the
form

f0(x, y) = exy.

Obviously ρ(x, y) = xy being a harmonic function satisfies condition 30. Then FI =
iexy(y− ix) and GI = −e−xy(y− ix). Returning to the notation of section 3 (see the beginning
of section 5) we have FI = k ex1x2(x1 − kx2) = ex1x2(x2 + kx1) and GI = −e−x1x2(x1 − kx2).
Then the corresponding pair of solutions of (10) has the form

F1 = FI j = ex1x2(−x1i + x2 j) and F2 = GI j = −e−x1x2(x2i + x1j).

Next step (see remark 10) consists in finding the corresponding functions �1 and �2 from
equation (18). Thus we should reconstruct �1 and �2 from the equalities

grad �1 = −x1i + x2 j and grad �2 = −e−2x1x2(x2i + x1j).

Using the standard formula for finding the potential function from its gradient we obtain

�1 = − 1
2

(
x2

1 − x2
2 − C1

)
and �2 = 1

2 (e−2x1x2 + C2)

where C1 and C2 are arbitrary constants.
Now we can construct the vectors g1 = grad �1/�1 and g2 = grad �2/�2:

g1 = 2

x2
1 − x2

2 − C1
(x1i − x2j), g2 = 2

(
C2

e−2x1x2 + C2
− 1

)
(x2i + x1j).

Noting that h =Df0/f0 = x2i + x1j we obtain two solutions q1 = h + g1 and q2 = h + g2

for (5):

q1 =
(

x2 +
2x1

x2
1 − x2

2 − C1

)
i +

(
x1 − 2x2

x2
1 − x2

2 − C1

)
j

and

q2 =
(

−x2 +
2C2x2

e−2x1x2 + C2

)
i +

(
−x1 +

2C2x1

e−2x1x2 + C2

)
j.

Now we find the functions �1 and �2 which are solutions of the equations grad �1,2 = q1,2:

�1 = ln
∣∣x2

1 − x2
2 − C1

∣∣ + x1x2 + C3
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and

�2 = x1x2 + ln|e−2x1x2 + C2| + C4.

Then the corresponding solutions f1 and f2 of (34) have the form

f1 = e�1 = d1
(
x2

1 − x2
2 − C1

)
ex1x2 = d1(y

2 − x2 − C1) exy

and

f2 = e�2 = d2(e
−x1x2 + C2 ex1x2) = d2(e

−xy + C2 exy) (47)

where d1 and d2 are arbitrary constants.
Thus starting with a particular solution of (34) we constructed two classes of solutions

for the same Schrödinger equation.

Example 32. In order to illustrate the Cauchy integral theorem for the Schrödinger equation let
us use the following two particular solutions from the preceding example. Let f0(x, y) = exy

and as f1 we choose the function from (47) when C2 = 0 and d2 = 1, f1(x, y) = e−xy . Both
f0 and f1 are solutions of (34) with the same potential u in a whole plane. Thus we can apply
theorem 26 and consider � being for example a unit circle with centre at the origin. Then

Re
∫

�

∂z

(
f1

f0

)
dz + i Im

∫
�

f 2
0 ∂z

(
f1

f0

)
dz

= 2 Re
∫

�

(−y + ix) e−2xy dz + 2 i Im
∫

�

(−y + ix) dz

= 2 Re
∫ 2π

0
i (−sin τ + i cos τ) e−2 cos τ sin τ dτ + 2 i Im

∫ 2π

0
i (−sin τ + i cos τ) dτ

= −2
∫ 2π

0
cos τ e−2 cos τ sin τ dτ − 2 i

∫ 2π

0
sin τ dτ.

It is easy to see that both integrals are equal to zero.

Let us calculate the characteristic coefficients for the pair (FI ,GI ) defined by (46). We
have

a(FI ,GI ) = 0, b(FI ,GI ) = −∂zf0

f0
,

A(FI ,GI ) = ρzz

ρz

− ρzz

ρ z

, B(FI ,GI ) = −f ′
0ρ

2
z

f0ρz

.

Consider the equation

1
φz FI +

1
ψz GI = 0

where
1
φ and

1
ψ are real-valued functions. It has the form

if 2
0

1
φz −

1
ψz= 0 (48)

or as a system

1
ψx +f 2

0

1
φy= 0 (49)

1
ψy −f 2

0

1
φx= 0. (50)
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Comparing with system (39), (40) we note that solutions of that system can be transformed
into solutions of system (49), (50) in the following way:

1
φ= ψ and

1
ψ= −φ.

Let us calculate F ∗
I and G∗

I using definition 17:

F ∗
I = −f0 eS

ρz

and G∗
I = − ieS

f0ρz

.

Consider the equation
2
φz F ∗

I +
2
ψz G∗

I = 0

where
2
φ and

2
ψ are real-valued functions. It has the form

if 2
0

2
φz −

2
ψz= 0. (51)

Observe that it coincides with (48). Thus we obtain that the function v = φFI + ψGI is
(FI ,GI )-pseudoanalytic iff the function W = φF ∗

I + ψG∗
I is (F ∗

I ,G∗
I )-pseudoanalytic.

Let us calculate

B(F ∗
I ,G∗

I )
= ∂zf0

f0
.

That is the characteristic coefficient b of a successor of (F ∗
I ,G∗

I ) is equal to −∂zf0/f0 = b(F,G).
Thus, (F,G) is a successor of (F ∗

I ,G∗
I ). This important observation opens the way to obtain

an infinite set of solutions of the original Schrödinger equation (34) if f0 satisfies condition 30.
Namely, we start with a solution of (29), for instance with F. Then its (F ∗

I ,G∗
I ) antiderivative

gives us an (F ∗
I ,G∗

I )-pseudoanalytic function, more precisely the corresponding functions
φ and ψ such that the function W = φF ∗

I + ψG∗
I is (F ∗

I ,G∗
I )-pseudoanalytic. Then we

take these real-valued functions φ, ψ and consider the function v = φFI + ψGI which is
(FI ,GI )-pseudoanalytic. That is v satisfies (30) and hence the vector F = vj with the aid of
the chain of actions described in remark 10 can be transformed into a solution of (34). Taking
the (F,G) antiderivative of iv we obtain another solution of (29) and can start this cycle again.
We can represent schematically this procedure for obtaining an infinite sequence of solutions
of (30) and consequently of (34) as the following diagram.

Solutions of (34)

↗
(F,G) ←− (FI ,GI )

↘ ↑
(F ∗

I ,G∗
I )

Let us consider how this procedure works on the following example.

Example 33. Here we use the same u and f0 as in example 31. Then F = 1/f0. We have that
F ∗

I = −exy/(y − ix),G∗
I = −ie−xy/(y − ix). Consider

∗
∫ z

0
F d(F ∗

I ,G∗
I )
z = Re

∫ z

0
FGI dz + i Re

∫ z

0
FFI dz

= −Re
∫ 1

0
e−2xyt2

(yt − ixt)(x + iy) dt + i Re
∫ 1

0
(xt + iyt)(x + iy) dt

= e−2xy − 1

2
+ i

(x2 − y2)

2
.
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Thus we have φ = (e−2xy − 1)/2 and ψ = (x2 − y2)/2. It is easy to check that in fact
φzF

∗
I + ψzG

∗
I = 0, so the function

W = φF ∗
I + ψG∗

I = − 1

2(y − ix)
(e−xy − exy + ie−xy(x2 − y2))

= sinh(xy)

y − ix
− ie−xy(x2 − y2)

2(y − ix)

is (F ∗
I ,G∗

I )-pseudoanalytic. Now we can construct an (FI ,GI )-pseudoanalytic function as
follows:

v = φFI + ψGI = − (y − ix)

2
(e−xy(x2 − y2) − i(e−xy − exy))

= −(y − ix)

(
e−xy(x2 − y2)

2
+ i sinh(xy)

)
.

Thus v is a solution of (30) and applying the procedure described above it can be transformed
into a solution of (34).

Now multiplying the function v by i we obtain a solution of (32) the (F,G) antiderivative
of which gives us a new solution of (29) and the cycle starts again.

Thus starting with a particular solution f0 of (34) and hence with a particular solution F
of (29) we obtain an infinite sequence of solutions of (34).

6. Conclusions

In the first part of this work a generalization of the Euler theorem for the quaternionic Riccati
equation was presented. For the Schrödinger equation it implies that given a particular
solution, the general solution reduces to a first-order quaternionic differential equation which
is equivalent to the static Maxwell system. In the second part we analysed the case of
two independent variables. Then the first-order quaternionic equation becomes the Vekua
equation describing pseudoanalytic or generalized analytic functions. Consideration of a
complete (four-component) quaternionic solution suggests an auxiliary Vekua equation for
which we are able to construct the Bers generating pair explicitly. Solutions of the main
Vekua equation result to be Bers derivatives of solutions of the auxiliary equation multiplied
by i. This fact gives us the possibility of applying some of the power of Bers’ theory of
pseudoanalytic functions in order to obtain such general results for the Schrödinger equation
as analogues of the Cauchy integral theorem and of the Morera theorem.

Moreover, for a quite ample class of potentials we succeed in constructing explicitly a
generating pair for the main Vekua equation which implies an interesting cyclic procedure
producing an infinite set of exact solutions to the original Schrödinger equation. Among other
possible potentials admitting the procedure there are, for instance, all radial potentials.

It is clear that in the present work only some possible applications of the main results
were considered. The revealed relation between the Schrödinger equation and the first-order
quaternionic equation or in a two-dimensional situation with the Vekua equation can be used
for analysis of boundary value problems, for obtaining integral representations of solutions
and possibly for other interesting applications.
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